This is a follow-up question, sort of, to this one: Write an efficient string replacement function? .
In (albeit distant) future I hope to get to do natural language processing. Of course speed of strings manipulation is important because of that. Accidentally, I've stumbled over this test: http://raid6.com.au/~onlyjob/posts/arena/ - all tests are biased, this is no exception. However, it raised important question for me. And so I wrote a few tests to see how am I doing:
This was my first attempt (I'll call it #A):
#A
(defun test ()
(declare (optimize (debug 0) (safety 0) (speed 3)))
(loop with addidtion = (concatenate 'string "abcdefgh" "efghefgh")
and initial = (get-internal-real-time)
for i from 0 below (+ (* (/ 1024 (length addidtion)) 1024 4) 1000)
for ln = (* (length addidtion) i)
for accumulated = addidtion
then (loop with concatenated = (concatenate 'string accumulated addidtion)
for start = (search "efgh" concatenated)
while start do (replace concatenated "____" :start1 start)
finally (return concatenated))
when (zerop (mod ln (* 1024 256))) do
(format t "~&~f s | ~d Kb" (/ (- (get-internal-real-time) initial) 1000) (/ ln 1024)))
(values))
(test)
Baffled with the results, I tried to use cl-ppcre
- I don't know what I was hoping for, but the results came out as really bad... Here's the code I used for testing:
#B
(ql:quickload "cl-ppcre")
(defun test ()
(declare (optimize (debug 0) (safety 0) (speed 3)))
(loop with addidtion = (concatenate 'string "abcdefgh" "efghefgh")
and initial = (get-internal-real-time)
for i from 0 below (+ (* (/ 1024 (length addidtion)) 1024 4) 1000)
for ln = (* (length addidtion) i)
for accumulated = addidtion
then (cl-ppcre:regex-replace-all "efgh" (concatenate 'string accumulated addidtion) "____")
when (zerop (mod ln (* 1024 256))) do
(format t "~&~f s | ~d Kb" (/ (- (get-internal-real-time) initial) 1000) (/ ln 1024)))
(values))
(test)
Well, then, in hopes to maybe side-step some generalizations, I decided to write my own, albeit somewhat naive version:
#C
(defun replace-all (input match replacement)
(declare (type string input match replacement)
(optimize (debug 0) (safety 0) (speed 3)))
(loop with pattern fixnum = (1- (length match))
with i fixnum = pattern
with j fixnum = i
with len fixnum = (length input) do
(cond
((>= i len) (return input))
((zerop j)
(loop do
(setf (aref input i) (aref replacement j) i (1+ i))
(if (= j pattern)
(progn (incf i pattern) (return))
(incf j))))
((char= (aref input i) (aref match j))
(decf i) (decf j))
(t (setf i (+ i 1 (- pattern j)) j pattern)))))
(defun test ()
(declare (optimize (debug 0) (safety 0) (speed 3)))
(loop with addidtion string = (concatenate 'string "abcdefgh" "efghefgh")
and initial = (get-internal-real-time)
for i fixnum from 0 below (+ (* (/ 1024 (length addidtion)) 1024 4) 1000)
for ln fixnum = (* (length addidtion) i)
for accumulated string = addidtion
then (replace-all (concatenate 'string accumulated addidtion) "efgh" "____")
when (zerop (mod ln (* 1024 256))) do
(format t "~&~f s | ~d Kb" (/ (- (get-internal-real-time) initial) 1000) (/ ln 1024)))
(values))
(test)
Almost as slow as cl-ppcre
! Now, that's incredible! There isn't anything I can spot here such that would result in such poor performance... And still it does suck :(
Realizing that the standard functions performed the best so far, I looked into SBCL source and after some reading I came up with this:
#D
(defun replace-all (input match replacement &key (start 0))
(declare (type simple-string input match replacement)
(type fixnum start)
(optimize (debug 0) (safety 0) (speed 3)))
(loop with input-length fixnum = (length input)
and match-length fixnum = (length match)
for i fixnum from 0 below (ceiling (the fixnum (- input-length start)) match-length) do
(loop with prefix fixnum = (+ start (the fixnum (* i match-length)))
for j fixnum from 0 below match-length do
(when (<= (the fixnum (+ prefix j match-length)) input-length)
(loop for k fixnum from (+ prefix j) below (the fixnum (+ prefix j match-length))
for n fixnum from 0 do
(unless (char= (aref input k) (aref match n)) (return))
finally
(loop for m fixnum from (- k match-length) below k
for o fixnum from 0 do
(setf (aref input m) (aref replacement o))
finally
(return-from replace-all
(replace-all input match replacement :start k))))))
finally (return input)))
(defun test ()
(declare (optimize (debug 0) (safety 0) (speed 3)))
(loop with addidtion string = (concatenate 'string "abcdefgh" "efghefgh")
and initial = (get-internal-real-time)
for i fixnum from 0 below (+ (* (/ 1024 (length addidtion)) 1024 4) 1000)
for ln fixnum = (* (length addidtion) i)
for accumulated string = addidtion
then (replace-all (concatenate 'string accumulated addidtion) "efgh" "____")
when (zerop (mod ln (* 1024 256))) do
(format t "~&~f s | ~d Kb" (/ (- (get-internal-real-time) initial) 1000) (/ ln 1024)))
(values))
(test)
Finally, I can win, although a tiny fraction of performance against the standard library - yet it is still very-very bad compared to almost everything else...
Here's the table with the results:
| SBCL #A | SBCL #B | SBCL #C | SBCL #D | C gcc 4 -O3 | String size |
|-----------+-----------+------------+-----------+-------------+-------------|
| 17.463 s | 166.254 s | 28.924 s | 16.46 s | 1 s | 256 Kb |
| 68.484 s | 674.629 s | 116.55 s | 63.318 s | 4 s | 512 Kb |
| 153.99 s | gave up | 264.927 s | 141.04 s | 10 s | 768 Kb |
| 275.204 s | . . . . . | 474.151 s | 251.315 s | 17 s | 1024 Kb |
| 431.768 s | . . . . . | 745.737 s | 391.534 s | 27 s | 1280 Kb |
| 624.559 s | . . . . . | 1079.903 s | 567.827 s | 38 s | 1536 Kb |
Now, the question: What did I do wrong? Is this something inherent to Lisp strings? Can this probably be mitigated through... what?
In the long shot, I'd even consider writing a specialized library for string processing. If the problem isn't my bad code, but rather the implementation. Would it make sense to do so? If yes, what language would you suggest for doing it?
EDIT: Just for the record, I'm now trying to use this library: https://github.com/Ramarren/ropes to deal with strings concatenation. Unfortunately, it doesn't have a replace function in it and doing multiple replaces isn't very trivial. But I'll keep this post updated when I have something.
I've tried to slightly change huaiyuan's variant to use array's fill-pointers instead of string concatenation (to achieve something similar to StringBuilder
suggested by Paulo Madeira. It probably can be optimized further, but I'm not sure about the types / which will method be faster / will it be worth to redefine types for *
and +
to get them to only operate on fixnum
or signed-byte
. Anyway, here's the code and the benchmark:
(defun test/e ()
(declare (optimize speed))
(labels ((min-power-of-two (num)
(declare (type fixnum num))
(decf num)
(1+
(progn
(loop for i fixnum = 1 then (the (unsigned-byte 32) (ash i 1))
while (< i 17) do
(setf num
(logior
(the fixnum
(ash num (the (signed-byte 32)
(+ 1 (the (signed-byte 32)
(lognot i)))))) num))) num)))
(join (x y)
(let ((capacity (array-dimension x 0))
(desired-length (+ (length x) (length y)))
(x-copy x))
(declare (type fixnum capacity desired-length)
(type (vector character) x y x-copy))
(when (< capacity desired-length)
(setf x (make-array
(min-power-of-two desired-length)
:element-type 'character
:fill-pointer desired-length))
(replace x x-copy))
(replace x y :start1 (length x))
(setf (fill-pointer x) desired-length) x))
(seek (old str pos)
(let ((q (position (aref old 0) str :start pos)))
(and q (search old str :start2 q))))
(subs (str old new)
(loop for p = (seek old str 0) then (seek old str p)
while p do (replace str new :start1 p))
str))
(declare (inline min-power-of-two join seek subs)
(ftype (function (fixnum) fixnum) min-power-of-two))
(let* ((builder
(make-array 16 :element-type 'character
:initial-contents "abcdefghefghefgh"
:fill-pointer 16))
(ini (get-internal-real-time)))
(declare (type (vector character) builder))
(loop for i fixnum below (+ 1000 (* 4 1024 1024 (/ (length builder))))
for j = builder then
(subs (join j builder) "efgh" "____")
for k fixnum = (* (length builder) i)
when (= 0 (mod k (* 1024 256)))
do (format t "~&~8,2F sec ~8D kB"
(/ (- (get-internal-real-time) ini) 1000)
(/ k 1024))))))
1.68 sec 256 kB
6.63 sec 512 kB
14.84 sec 768 kB
26.35 sec 1024 kB
41.01 sec 1280 kB
59.55 sec 1536 kB
82.85 sec 1792 kB
110.03 sec 2048 kB
get-interlal-real-time
- in SBCL it is in milliseconds), but other than that I normally usetime
macro. I was just trying to keep as close to the original examples as possible. – Burtburta