Consider this simple situation:
A.h
class A {
public:
virtual void a() = 0;
};
B.h
#include <iostream>
class B {
public:
virtual void b() {std::cout << "b()." << std::endl;};
};
C.h
#include "A.h"
#include "B.h"
class C : public B, public A {
public:
void a() {std::cout << "a() in C." << std::endl;};
};
int main() {
B* b = new C();
((A*) b)->a(); // Output: b().
A* a = new C();
a->a(); // Output:: a() in C.
return 0;
}
In other words:
- A is a pure virtual class.
- B is a class with no super class and one non-pure virtual function.
- C is a subclass of A and B and overrides A's pure virtual function.
What surprises me is the first output i.e.
((A*) b)->a(); // Output: b().
Although I call a() in the code, b() is invoked. My guess is that it is related to the fact that the variable b is a pointer to class B which is not a subclass of class A. But still the runtime type is a pointer to a C instance.
What is the exact C++ rule to explain this, from a Java point of view, weird behaviour?
dynamic_cast
will correctly traverse your hierarchy. When you cast unrelated pointer types, you get undefined behavior. That means anything could happen, from it seeming to work to blowing your computer up. – Dot