Find the most appropriate team compositions for days in which it is possible. A set of n participants, k days, a team has m slots. A participant specifies how many days he wants to be a part of and which days he is available.
Result constraints:
- Participants must not be participating in more days than they want
- Participants must not be scheduled in days they are not available in.
- Algorithm should do its best to include as many unique participants as possible.
- A day will not be scheduled if less than m participants are available for that day.
I find myself solving this problem manually every week at work for my football team scheduling and I'm sure there is a smart programmatic approach to solve it. Currently, we consider only 2 days per week and colleagues write down their name for which day they wanna participate, and it ends up having big lists for each day and impossible to please everyone.
I considered a new approach in which each colleague writes down his name, desired times per week to play and which days he is available, an example below:
Kane 3 1 2 3 4 5
The above line means that Kane wants to play 3 times this week and he is available Monday through Friday. First number represents days to play, next numbers represent available days(1 to 7, MOnday to Sunday).
Days with less than m (in my case, m = 12) participants are not gonna be scheduled. What would be the best way to approach this problem in order to find a solution that does its best to include each participant at least once and also considers their desires(when to play, how much to play).
I can do programming, I just need to know what kind of algorithm to implement and maybe have a brief logical explanation for the choice.
Result constraints:
- Participants must not play more than they want
- Participants must not be scheduled in days they don't want to play
- Algorithm should do its best to include as many participants as possible.
- A day will not be scheduled if less than m participants are available for that day.