You can use the Flatten
transform too. For example:
data1 = ['one', 'two', 'three']
data2 = ['four','five']
input1 = p | 'Create PCollection1' >> beam.Create(data1)
input2 = p | 'Create PCollection2' >> beam.Create(data2)
merged = ((input1,input2) | 'Merge PCollections' >> beam.Flatten())
merged PCollection will contain:
INFO:root:one
INFO:root:two
INFO:root:three
INFO:root:four
INFO:root:five
full code:
import argparse, logging
import apache_beam as beam
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.options.pipeline_options import SetupOptions
class LogFn(beam.DoFn):
"""Prints information"""
def process(self, element):
logging.info(element)
return element
def run(argv=None):
parser = argparse.ArgumentParser()
known_args, pipeline_args = parser.parse_known_args(argv)
pipeline_options = PipelineOptions(pipeline_args)
pipeline_options.view_as(SetupOptions).save_main_session = True
p = beam.Pipeline(options=pipeline_options)
data1 = ['one', 'two', 'three']
data2 = ['four','five']
input1 = p | 'Create PCollection1' >> beam.Create(data1)
input2 = p | 'Create PCollection2' >> beam.Create(data2)
merged = ((input1,input2) | 'Merge PCollections' >> beam.Flatten())
merged | 'Check Results' >> beam.ParDo(LogFn())
result = p.run()
result.wait_until_finish()
if __name__ == '__main__':
logging.getLogger().setLevel(logging.INFO)
run()