in keras, I want to customize my loss function which not only takes (y_true, y_pred) as input but also need to use the output from the internal layer of the network as the label for an output layer.This picture shows the Network Layout
Here, the internal output is xn, which is a 1D feature vector. in the upper right corner, the output is xn', which is the prediction of xn. In other words, xn is the label for xn'.
While [Ax, Ay] is traditionally known as y_true, and [Ax',Ay'] is y_pred.
I want to combine these two loss components into one and train the network jointly.
Any ideas or thoughts are much appreciated!