Alan Kay said that reading the code closely and finding the 1 and only bug in the code on page 13 of the Lisp 1.5 manual, helped him understand Computer Science by a factor of 100 better.
The code in question is the 1st release of eval
& apply
that looks anything remotely like modern lisp (that I'm aware of).
Since the correct answer is likely known but lost (my google-fu is decent and I've searched for 20 mins at least) I will award the 1st correct answer (I will be looking at edit times so don't try to cheat) a 250 point bounty As Soon As Possible.
I would suggest others contribute to the bounty as well, remember from the video above Alan Kay said this stuff is reminiscent of the environment Einstein was in when he discovered the Theory of Relativity.
The code in the text is written in M-Expressions. I'm working on a translator to translate from M-expressions to S-expressions (lisp code) @https://github.com/Viruliant/MccarthyMCEval-1.5.
Anyways here is the translated quote from page 13:
;______________________________________Lisp Meta-Circular Evaluator S-Expression
;this code is written in the order it appears on pages 10-13 in the Lisp 1.5 Manual
;and is translated from the m-expressions into s-expressions
(label mc.equal (lambda (x y)
(mc.cond
((atom x) ((mc.cond ((atom y) (eq x y)) ((quote t) (quote f)))))
((equal (car x)(car y)) (equal (cdr x) (cdr y)))
((quote t) (quote f)))))
(label mc.subst (lambda (x y z)
(mc.cond
((equal y z) (x))
((atom z) (z))
((quote t) (cons (subst x y (car z))(subst x y (cdr z)))))))
(label mc.append (lambda (x y)
(mc.cond
((null x) (y))
((quote t) (cons (car x)) (append (cdr x) y)))))
(label mc.member (lambda (x y)
(mc.cond ((null y) (quote f))
((equal x (car y)) (quote t))
((quote t) (member x (cdr y))))))
(label mc.pairlis (lambda (x y a)
(mc.cond ((null x) (a)) ((quote t) (cons (cons (car x)(car y))
(pairlis (cdr x)(cdr y) a)))))
(label mc.assoc (lambda (x a)
(mc.cond ((equal (caar a) x) (car a)) ((quote t) (assoc x (cdr a))))))
(label mc.sub2 (lambda (a z)
(mc.cond ((null a) (z)) (((eq (caar a) z)) (cdar a)) ((quote t) (
sub2 (cdr a) z)))))
(label mc.sublis (lambda (a y)
(mc.cond ((atom y) (sub2 a y)) ((quote t) (cons (sublis a (car y))))
(sublis a (cdr y)))))
(label mc.evalquote (lambda (fn x)
(apply fn x nil)))
(label mc.apply (lambda (fn x a)
(mc.cond ((atom fn) (
(mc.cond
((eq fn car) (caar x))
((eq fn cdr) (cdar x))
((eq fn cons) (cons (car x)(cadr x)))
((eq fn atom) (atom (car x)))
((eq fn eq) (eq (car x)(cadr x)))
((quote t) (apply (eval (fn a)x a))))))
((eq (car fn) lambda) (eval (caddr fn) (parlis (cadr fn) x a)))
((eq (car fn) label) (apply (caddr (fn)x cons (cons (cadr (fn)))
(caddr fn))a)))))
(label mc.eval (lambda (e a)
(mc.cond
((atom e) (cdr (assoc e a)))
((atom (car e)) (mc.cond
((eq (car e) quote) (cadr e))
((eq (car e) cond) (evcon (cdr e) a))
((quote t) (apply (car e) (evlis (cdr e) a) a))))
((quote t) (apply (car e) (evlis (cdr e) a) a))))))
(label mc.evcon (lambda (c a)
(mc.cond
((eval (caar c) a) (eval (cadar c) a))
((quote t) (evcon (cdr c) a)))))
(label mc.evlis (lambda (m a)
(mc.cond
((null m) (nil))
((quote t) (cons (eval (car m) a) (evlis (cdr m) a)))))))