I wanted to use the tf.contrib.distribute.MirroredStrategy() on my Multi GPU System but it doesn't use the GPUs for the training (see the output below). Also I am running tensorflow-gpu 1.12.
I did try to specify the GPUs directly in the MirroredStrategy, but the same problem appeared.
model = models.Model(inputs=input, outputs=y_output)
optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
model.compile(loss=lossFunc, optimizer=optimizer)
NUM_GPUS = 2
strategy = tf.contrib.distribute.MirroredStrategy(num_gpus=NUM_GPUS)
config = tf.estimator.RunConfig(train_distribute=strategy)
estimator = tf.keras.estimator.model_to_estimator(model,
config=config)
These are the results I am getting:
INFO:tensorflow:Device is available but not used by distribute strategy: /device:CPU:0
INFO:tensorflow:Device is available but not used by distribute strategy: /device:GPU:0
INFO:tensorflow:Device is available but not used by distribute strategy: /device:GPU:1
WARNING:tensorflow:Not all devices in DistributionStrategy are visible to TensorFlow session.
The expected result would be obviously to run the training on a Multi GPU system. Are those known issues?