The following code is used to do KFold Validation but I am to train the model as it is throwing the error
ValueError: Error when checking target: expected dense_14 to have shape (7,) but got array with shape (1,)
My target Variable has 7 classes. I am using LabelEncoder
to encode the classes into numbers.
By seeing this error, If I am changing the into MultiLabelBinarizer
to encode the classes. I am getting the following error
ValueError: Supported target types are: ('binary', 'multiclass'). Got 'multilabel-indicator' instead.
The following is the code for KFold validation
skf = StratifiedKFold(n_splits=10, shuffle=True)
scores = np.zeros(10)
idx = 0
for index, (train_indices, val_indices) in enumerate(skf.split(X, y)):
print("Training on fold " + str(index+1) + "/10...")
# Generate batches from indices
xtrain, xval = X[train_indices], X[val_indices]
ytrain, yval = y[train_indices], y[val_indices]
model = None
model = load_model() //defined above
scores[idx] = train_model(model, xtrain, ytrain, xval, yval)
idx+=1
print(scores)
print(scores.mean())
I don't know what to do. I want to use Stratified K Fold on my model. Please help me.